Orbit/CLASP Is Required for Germline Cyst Formation through Its Developmental Control of Fusomes and Ring Canals in Drosophila Males
نویسندگان
چکیده
Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the duplicated centrosomes onto the fusome. Moreover, Orbit is involved in the proper orientation of spindles towards fusomes during synchronous mitosis of spermatogonial cysts.
منابع مشابه
The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation.
Oogenesis in Drosophila takes place within germline cysts that support polarized transport through ring canals interconnecting their 15 nurse cells and single oocyte. Developing cystocytes are spanned by a large cytoplasmic structure known as the fusome that has been postulated to help form ring canals and determine the pattern of nurse cell-oocyte interconnections. We identified the adducin-li...
متن کاملProtein Phosphatase 1ß Limits Ring Canal Constriction during Drosophila Germline Cyst Formation
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated rema...
متن کاملalpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary.
During Drosophila oogenesis, developing germline cysts are spanned by a large cytoplasmic structure called a fusome, containing alpha-spectrin and the adducin-like product of the hu-li tai shao (hts) gene. We found that fusomes contain two additional membrane skeletal proteins: beta-spectrin and ankyrin. hts was shown previously to be required for cyst formation and oocyte differentiation; the ...
متن کاملMorphogenesis of the Drosophila fusome and its implications for oocyte specification.
The Drosophila oocyte develops within a cyst of 16 germline cells interconnected by ring canals. Polarized, microtubule-based transport of unknown determinants is required for oocyte formation, but whether polarity is established during or after cyst formation is not clear. We have analyzed how polarity develops in stem cells and dividing cysts by following the growth of the fusome, a vesiculat...
متن کاملLoss of the extraproteasomal ubiquitin receptor Rings lost impairs ring canal growth in Drosophila oogenesis
In Drosophila melanogaster oogenesis, there are 16 germline cells that form a cyst and stay connected to each other by ring canals. Ring canals allow the cytoplasmic transport of proteins, messenger ribonucleic acids, and yolk components from the nurse cells into the oocyte. In this paper, we describe the protein Rings lost (Rngo) and show that it is required for ring canal growth in germline c...
متن کامل